Top100
Поиск: реферат, курсовая, диплом
Поиск рефератов [+]

Студик.ру / банк рефератов / Авиация и космонавтика /

Система автоматического регулирования температуры газов в газотурбинном двигателе

Система автоматического регулирования температуры газов в газотурбинном двигателе .

Структурная схема:

где: ОР объект регулирования; ЧЭ чувствительный элемент; У усилитель; ИМ исполнительный механизм; КЗ корректирующее звено;

Значения заданных параметров для исследуемой системы

Передаточная функцияКоэффициент усиленияПостоянная времениОбъекта регулир-яЧувств. эл-таУсилителяИсполн. мех-маКоррек звенаК1К2К3К4Т0Т1К1 Т0р+1К2 Т1р+1К3К4 рК5р1,11100,531,1 Описание работы реальной системы: В данной работе рассматривается система автоматического регулирования температуры газов в газотурбинном двигателе самолета. КЗ, которое в данном случае является реальным дифференцирующим звеном, реагирует на поступающий сигнал от ОР и дифференцируя его во времени, прогнозирует изменение температуры, т.е., система реагирует на малейшее отклонение температуры от заданной, не допуская критического ее понижения. Затем сигнал из сумматора поступает на усилитель, а с него на исполнительный механизм, который выполняет требуемую коррекцию температуры. ХОД РАБОТЫ 1) САУ разомкнута.

Структурная схема:

На графике видно, что система неустойчива. При аналитической проверке система будет являться устойчивой, если все корни его характеристического уравнения лежат в левой полуплоскости. Проверяется это при помощи критерия устойчивости Гурвица. Согласно ему, для того, чтобы корни характеристического уравнения лежали строго в левой полуплоскости, необходимо и достаточно, чтобы главный определитель матрицы Гурвица и все его диагональные миноры были больше нуля. Передаточная функция:

где 3,3S3 +4,1S2 +S характеристическое уравнение, в котором а0=3,3, а1=4,1, а2=1, а3=0. Поскольку свободный член характеристического уравнения равен нулю, значит один из корней равен нулю, и отсюда следует, что система находится на грани устойчивости.

2)САУ замкнута.

Структурная схема:

На графике зависимости видно, что система не устойчива. Передаточная функция:

где 3,3S3 +4,1S2 +S +5,5 характеристическое уравнение, в котором а1=3,3, а2=4,1, а3=1, а4=5,5 Исследуем устойчивость системы с помощью критерия устойчивости Гурвица: 1=а1=3,3>0, 2==а1·а2-а0·а3=4,1-18,15=-14,05<0

Следовательно, замкнутая система не устойчива. 2)САУ с корректирующим звеном. На этом этапе лабораторной работы рассматривается данная система, но уже с корректирующим звеном, для которого мы экспериментальным путём подбираем коэффициент коррекции, при котором система была бы устойчивой. Рассматривается два варианта, при k=0,1 и k=2. а) Структурная схема:

График зависимости показывает, что система не устойчива. Передаточная функция:

где характеристическое уравнение, в котором а0=3, а1=4, а2=1, а3=5,5 Исследуем устойчивость системы с помощью критерия устойчивости Гурвица: 1=а1=3>0, 2==а1·а2-а0·а3=4,1·1-5,5·3,3=4,1-18,15<0 Отсюда можно сделать вывод, что при значении коэффициента k=0,1 система не устойчива. 2)

График зависимости показывает, что система не устойчива. Передаточная функция:

где характеристическое уравнение, в котором а0=1,8, а1=3,9, а2=1, а3=5,5 Исследуем устойчивость системы с помощью критерия устойчивости Гурвица: 1=а1=1,8>0, 2==а1·а2-а0·а3=3,9·5,5-1·1,8=19,65<0 Отсюда можно сделать вывод, что при значении коэффициента К=2 система устойчива. Вывод: В данной лабораторной работе рассматривалась САУ регулирования температуры газов, поверялась
ее устойчивость в зависимости от структуры. В первом случае моделировалась разомкнутая САУ. Результаты исследования показали, что она находится на границе устойчивости (температура газа в газотурбинном двигателе непрерывно росла с течением времени), что указывает на ненадежность системы, так как она может в любой момент перейти в неустойчивое состояние. Для повышения надежности системы вводится обратная отрицательная связь. Однако система оставалась неустойчивой, т.е. температура газа колебалась. На следующем этапе в систему было включено корректирующее звено, и экспериментальным методом подбирался коэффициент, при котором система была бы устойчивой, и время регулирования было бы минимальным. Исходя из показаний графиков, и критерия Гаусса оптимальным коэффициентом КЗ является k=2. Что касается самой среды моделирования, т.е. СИАМ, я могу сказать что она не смотря на неудобный интерфейс позволяет производить довольно сложные расчеты, если судить по документации, и позволяет увидеть результат моделирования конкретной системы в виде графика. Также ее плюсом является простота в эксплуатации и небольшие требования к вычислительной машине.


1
НА САЙТЕ:
Rambler TOP100 Яндекс цитирования