Top100

Студик.ру / Рефераты / Авиация и космонавтика /

Самолеты

не=0 для всех х на этом промежутке, тогда существует точка С принадлежащая (a,b), что f(b)-f(a)/g(b)-g(a)=f'(c)/g'(c). Т. Лапиталя: Пусть функции f(x) и g(x) при х стремящемся а (или к бесконечности) совместно стремятся к 0 или бесконечности. Если отношение их производных имеет предел, то отношение самих функций так же имее предел=отношению произодных. 22. Т. Тейлора: Если f(x) обладает в замкнутом промежутке (a,b) производными до n+1-го порядка включительно, то f(b)=f(a)+f'(a)/1!*(b-a)+f''(a)/2!*(b-a)2+…+f(n)(a)/n!*(b-a)n+f(n+1)(c)/(n+1)!(b-a)n+1, где с - некоторое число лежащее между а и b. Rn=fn+1(c)/(n+1)!*(b-a)n+1 - остаточный член в форме Тейлора. 23. Формула Маклорена - формула Тейлора при а=0. f(x)=f(0)+f'(0)/1!*x+…+fn(0)/n!*xn+f(n+1)(C)/(n+1)!*xn+1. 24. Необходимое условие: Если f(x) в интервале возрастает (убывает), то ее производная f'(x)>=0 (f'(x)<=0). Достаточное условие: Если f'(x) от f(x) всюду на интервале положительна (отрицательна), f(x) в этом интервале возрастает (убывает). 25. Точка х=х0 называется глобальным минимумом (максимумом) f(x) на множестве m, если для всех х, принадлежащих m f(x)>f(x0) (f(x)x0.Необходимое условие: пусть функция f(x) дифференцирована в точке х0 и ее окрестности тогда f'(x)=0. 26. Достаточное условие (1-го порядка): Точка х0 является точкой экстремума функции f(x), если производная f(x) при переходе х через х0 меняет знак. 27. Точки, где 1-ая производная обращается в 0 называют стационарными точками. Достаточное условие 2-го порядка: пусть точка х0 - стационарна и существует f''(x0) - непрерывна, тогда если f''(x0)>0=> x0- точка минимума.(f''(x0)>0=> x0- точка максимума. 28. Дуга называется выпуклой, если она пересекается с любой своей секущей не более чем в двух точках. Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой. Если х0 - абсцисса точки перегиба, то либо f ''(x0)=0, либо не существует. 29. Если f ''(x) всюду в интервале отрицательна (положительна), то дуга линии y=f(x), соответствующая этому интервалу, выпуклая (вогнутая). 30. Прямая линия называется асимптотой графика функции, если расстояние точки графика от нашей прямой стремится к нулю при неограниченном удалении этой точки от начала координат. Вертикальные асимптоты: если lim f(x)=бесконечности при х стремящемся к х0, то линия y=f(x) имеет асимптоту х=х0. Наклонные асимптоты: Если f(x)/x при х стремящемся к бесконечности стремиться к конечному пределу а и если f(x)-ax при х стремящемся к бесконечности стремиться к конечному пределу b, то линия y=f(x) имеет асимптоту y=ax+b.

1 2
На сайте:
,
,
Rambler TOP100 Яндекс цитирования