|
Ионно-плазменные двигатели с высокочастотной безэлектродной ионизацией рабочего тела |
|
Министерство образования Украины
Государственный аэрокосмический университет
имени Н.Е. Жуковского
«Харьковский авиационный институт»
Кафедра 402
РЕФЕРАТ
на тему : Ионно-плазменные двигатели с высокочастотной безэлектродной ионизацией рабочего тела
Выполнил :
________ Юрченко С.А.
1999-03-03
Харьков 1999 г.
Содержание
лист
Введение31. Сравнительный анализ ЭРДУ61.1 Применение ЭРД71.2 Применение РИД91.3 Общие преимущества РИД91.4 Радиочастотный ионный движитель РИД-10101.5 Радиочастотный ионный движитель РИД-26111.6 Радиочастотный двигатель с магнитным полем (РМД)112 Разработка численной модели электроракетного двигателя с ВЧ нагревом рабочего тела132.1 Математический аппарат численной модели термогазодинамических процессов, имеющих место в камере и сопловом аппарате ракетного двигателя132.2 Термодинамические процессы, протекающие в камере электронагревного движителя16Заключение20Перечень условных обозначений, символов, единиц, сокращений и терминов 22Список используемых источников информации23Введение
Как было показано последними исследованиями, энергетика (энергообеспечение) космических аппаратов с ресурсом 1-20 лет всегда будет первостепенной проблемой. Двигатели малых тяг, которые осуществляют коррекцию и стабилизацию таких космических аппаратов, обладают некоторыми особенностями, например, длительным ресурсом, высокой надежностью, оптимальной «ценой» тяги (отношение энергетических затрат к единице тяги). Для обеспечения долгосрочного ресурса необходимо уменьшить температуру конструктивных элементов плазменных движителей, плазма не должна взаимодействовать с элементами конструкции. В основном скорость истекающей плазмы (характеристическая скорость) определяет удельный импульс движителя. Чем больше значение характеристической скорости, тем больше и удельный импульс. Для осуществления длительных работ (программ) в космосе необходимо иметь надежные, высокоэффективные электроракетные двигатели со скоростями истечения плазмы 103-105 м/с и более.
Мы получили следующие результаты: при скоростях истечения рабочего тела 1000-9000 м/с термоэлектрические движители работают надежно, а в настоящее время создаются движители со скоростями истечения рабочего тела 2000-20000 м/с.
Использование электродуговых плазменных движителей для этих целей продемонстрировало, что в данном диапазоне скоростей негативные явления наблюдаются лишь вследствие эксплуатации движителя больше заданного времени ресурса.
Повышение температуры плазмы в движителях такого типа приводят к повышению удельного импульса. Но почти 50% электрической энергии подводимой к электродам, превращается в тепло и не участвует в повышении скорости плазменного пучка, а электроды испаряются (уменьшаются), что уменьшает ресурс движителя.
В нашем университете многие годы ведется детальная разработка таких движителей. Сравнение современных достижений по типовым движителям приведено в таблице 1.
Одним из современных направлений развития плазменных ускорителей является разработка двигателей малых тяг, работающих на принципе безэлектродного создания электромагнитной силы в форме ВЧ- и СВЧ-полей в плазменном объеме, удержании плазмы и ее ускорении в магнитном поле заданной формы. В этом случае предлагается концепция термоэлектрического движителя с высокочастотным нагревом рабочего тела, такого как водород. Это позволяет существенно уменьшить взаимодействие плазмы на элементы плазменного ускорителя, исключить потери энергии на электродах и использование
магнитного сопла значительно повысят КПД движителя. Таким образом, преимущества этого типа движителей очевидны. Они заключаются в следующем:
- высокий КПД (0,4 0,5);
- длительный ресурс работы на борту (до 2-х лет);
- высокая надежность и безопасность;
- использование экологически чистого топлива;
- такие движители обеспечивают характеристическую скорость в требуемом диапазоне скоростей истечения, которую движители других типов не могут обеспечить;
- массовые характеристики, «цена» тяги и стоимость сборки не превышают существующих.
Это может стать возможным, если мы будем использовать некоторые достижения современной технологии и учтем некоторые нюансы:
1) Из всех рабочих тел водород обладает минимальной атомной массой, то есть скорость истечения водородной плазмы из ВЧ-ускорителя будет максимальной.
2) Водород экологически чистое рабочее вещество и необходимость его использования несомненна.
3) Сейчас у нас есть технология безопасного хранения связанного водорода в виде гибридов металлов на борту космического летательного аппарата. Это увеличивает КПД движителя и повышает эффективность работы системы в целом.
4) Известно, что при ионизации водорода в любом типе электрического разряда потери при передачи энергии от электронной компоненты к ионной минимальны из-за минимальных массовых различий и потому, что для атомов водорода возможна лишь однократная ионизация.
В таблице 1 приведены основные характеристики ионных двигателей разрабатываемых и применяемых в Европе в настоящее время.
Таблица 1
№ п.пХарактеристики движителяТип движителяРабочее телоХарактеристическая тяга, гХарактеристическая скорость, м/сЦена тяги, Вт/гКПД, %Особенности, ограничивающие ресурсПримечание1Стационарный плазменный движитель (СПД)Ксенон
(газ)1…518000…
2500015030…50Ресурс катода компенсатора и керамических изоляторов2Движитель с анодным слоем (ДАС)Газ, жидкий металл1…325000…
3500020030…45Ресурс катода компенсатора, ресурс электродов3Плазменный ионный движитель (ПИД)Газ, жидкий металл1…10 и более30000…
10000030030…45Ресурс катода компенсатора и ионно-оптической системыУвеличение тяги приводит к увеличению размеров4Торцевой холовский движитель (ТХД)Газ, жидкий металл1…325000…
3500030025…40Электроды и катодный узелУвеличение тяги пропорционально уменьшению ресурса5Электро-нагревный движитель (ЭНД)Газ1…51000…
400050…15020…30Нагреватель6ВЧ-движительГаз1…103000…
1500030…10040…50Отсутствуют 1 Сравнительный анализ ЭРДУ
Применение ионных плазменных двигателей малой тяги на геостационарных спутниках имеет следующие преимущества: уменьшение стартовой массы, увеличение массы полезного груза и ресурса спутника.
Сравнение ЭНД, СПД и РИД, используемых в системе стабилизации Север Юг, проведено на рисунке 1 и рисунке 2.
Рисунок 1,2. Стартовая масса спутника и зависимость сухой массы спутника от применяемой на нем двигательной установки.
Как показано на рисунке 1, стартовая масса спутника, включающая в себя сухую массу спутника (без массы ЭРДУ), составит:
4050 кг при использовании ЭНД;
3900 кг СПД;
3670 кг РИД.
Это означает, что стартовая масса спутника при использовании РИД вместо электродугового двигателя или СПД уменьшается на 380 и 230 кг соответственно. Уменьшение массы приводит к снижению стоимости запуска.
На рис. 2 показана зависимость сухой массы спутника от массы применяемой на нем двигательной установки (стартовая масса 4050 кг):
2090 кг при использовании ЭНД;
2170 кг СПД;
2310 кг РИД.
Масса полезного груза может быть увеличена
1 2 3 4
|
|
|
|
НА САЙТЕ: |
|