Top100
Поиск: реферат, курсовая, диплом
Поиск рефератов [+]

Студик.ру / Банк рефератов / Кибернетика /

Построение информационно-управляющей системы с элементами искусственного интеллекта

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра автоматики и промышленной электроники

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту на тему: “ Построение информационно-управляющей системы с элементами искусственного интеллекта.”

По дисциплине: “Элементы систем автоматического контроля и управления.”

Проектировал:студент группы ПЭЗ-51 Симоненко А.В. Проверил: Володченко Г.С.

Сумы 2000 г. СОДЕРЖАНИЕ.

ВВЕДЕНИЕ.

1.СИНТЕЗ СИСТЕМЫ УПРАВЛЕНИЯ КВАЗИСТАЦИОНАРНЫМ ОБЪЕКТОМ.

1.1 Построение информационной управляющей системы с элементами самонастройки.

1.2 Построение логарифмических АЧХ и ФЧХ и нескорректированной системы

1.3. Построение желаемых ЛАЧХ и ФЧХ скорректированной квазистационарной системы.

1.4. Построение ЛАЧХ корректирующего звена системы.

2.СИНТЕЗ ИНФОРМАЦИОННО-ПАРАМЕТРИЧЕСКОЙ СИСТЕМЫ ИДЕНТИФИКАЦИИ НЕСТАЦИОНАРНОГО ОБЪЕКТА УПРАВЛЕНИЯ. 2.1. Выбор метода синтеза системы. 2.2. Поиск минимизированного функционала качества. 3.ПОСТРОЕНИЕ АДАПТИВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ НЕСТАЦИОНАРНЫМ ДИНАМИЧЕСКИМ ОБЪЕКТОМ. 3.1. Синтез адаптивной системы управления нестационарным объектом с элементами искусственного интеллекта. ЗАКЛЮЧЕНИЕ. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

ВВЕДЕНИЕ.

При современном уровне развития науки и техники все большее распространение получают информационно-управляющие системы с элементами искусственного интеллекта на производстве, в быту, военной технике, а также там , где присутствие человека невозможно.Их особенностью является наличие в самой системе подсистем анализа и контроля состояния как самой системы управления так и состояния объекта управления с целью своевременного принятия решения и реагирования на внешние воздействия и изменения в самой системе. Системы автоматического контроля и управления должны обеспечить требуемую точность регулирования и устойчивость работы в широком диапазоне изменения параметров. Если раньше теория автоматического управления носила в основном линейный и детерминированный характер, решаемость теоретических задач определялась простотой решения, которое стремились получить в виде замкнутой конечной формы, то в настоящее время решающее значение приобретает четкая аналитическая формулировка алгоритма решения задачи и реализация его с помощью ЭВМ.

1.СИНТЕЗ СИСТЕМЫ УПРАВЛЕНИЯ КВАЗИСТАЦИОНАРНЫМ ОБЪЕКТОМ 1.1Построение информационной управляющей системы с элементами самонастройки.

Для нестационарного динамического объекта управления, поведение которого описывается нестационарными дифференциальными уравнениями вида (1.1):

введем условие квазистационарности на интервале

(1.2)

(1.3)

Для решения задачи представим объект управления в пространстве состояний, разрешив систему (1.1) относительно старшей производной: (1.4) Полученная система уравнений описывает структуру объекта управления в пространстве состояний. Соответствующая структурная схема представлена на рисунке 1.

Рис.1

Представим схему переменных состояний в форме Коши. Для этого введем переобозначение через z. Пусть (1.5) :

Система (1.5)-математическая модель объекта управления в форме Коши. Представим (1.5) в векторной форме:

(1.6) где

вектор состояний (1.7)

производная вектора состояний (1.8)

динамическая матрица о/у (1.9)

матрица
управления о/у (1.10)

вектор управляющих воздействий (1.11)

матрица измерений (1.12)

Определяем переходную матрицу состояний в виде:

Находим передаточные функции звеньев системы управления, для чего представляем систему дифференциальных уравнений (1.1) в операторной форме:

(1.13)

(1.14)

Вынесем общий множитель за скобки

(1.15)

Передаточная функция первого звена

где

тогда (1.16)

Подставляем численные значения (см.т/з):

Передаточная функция второго звена:

где

тогда (1.17) Подставляем численные значения:

Используя заданный коэффициент ошибки по скорости, находим требуемый коэффициент усиления на низких частотах:

(1.18)

Для обеспечения требуемого коэффициента усиления вводим пропорциональное звено с коэффициентом усиления , равным

Передаточная функция системы численно равна:

(1.19)

1.2 Построение логарифмических АЧХ и ФЧХ нескорректированной системы.

Заменив в выражении (1.19) , получим комплексную амплитудно-фазочастотную функцию разомкнутой системы:

(1.20)

Представим (1.20) в экспоненциальной форме:

(1.21)

Здесь

(1.22)

(1.23)

Логарифмируем выражение (1.22):

(1.24)

Слагаемые на частотах

равны нулю, а на частотах принимают значения . Соответственно, тогда логарифмическая амплитудно-частотная характеристика определяется выражением:

(1.25)

Определим частоты сопряжения:

(1.26)

Для построения логарифмических частотных характеристик выбираем следующие масштабы: -одна декада по оси абсцисс-10 см; -10 дб по оси ординат-2 см; -90° по оси ординат-4.5 см. В этих масштабах откладываем: -по оси частот-сопрягающие частоты; -по оси ординат-значение Через точку проводим прямую с наклоном -40 дб/дек, до частоты сопряжения

на частоте сопрягается следующая прямая с наклоном -20 дб/дек по отношению к предыдущей прямой .Эта прямая проводится до частоты сопряжения

на частоте сопрягается третья прямая с наклоном -20 дб/дек по отношению ко второй прямой. Третья прямая проводится до частоты сопряжения

Полученная таким образом ломаная кривая представляет собой ЛАЧХ разомкнутой нескорректированной квазистационарной системы, первая прямая проходит с наклоном к оси частот-40 дб/дек;вторая-20 дб/дек;третья0 дб/дек; четвертая-20 дб/дек. Фазочастотная характеристика нескорректированной разомкнутой системы строится в тех же координатах согласно выражения (1.24) , где -первое слагаемое -это прямая, проходящая параллельно оси частот на расстоянии ; -второе-четвертое слагаемые-тангенсоиды с точками перегиба на частотах сопряжения; в области высоких частот асимптотически приближаются к , а при

Алгебраическая сумма ординат всех четырех характеристик дает фазочастотную характеристику нескорректированной разомкнутой системы.. Для определения запасов устойчивости не скорректированной системы по амплитуде и по фазе необходимо: -точку пересечения суммарной ФЧХ с линией спроектировать на ЛАЧХ, тогда расстояние проекции этой точки до оси частот будет величиной запаса устойчивости по амплитуде в дб. Если же проекция этой точки окажется выше оси частот, то запаса устойчивости по амплитуде нет. -проекция частоты среза на суммарную ФЧХ относительно линии определяет величину
1 2 3
НА САЙТЕ:
,
,
Rambler TOP100 Яндекс цитирования