|
Содержание
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава I. ПРАВИЛЬНЫЕ КОНЕЧНЫЕ ЦЕПНЫЕ ДРОБИ
§1. Представление рациональных чисел цепными дробями
§2. Подходящие дроби. Их свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава II. БЕСКОНЕЧНЫЕ ЦЕПНЫЕ ДРОБИ
§1. Представление действительных иррациональных чисел правильными бесконечными цепными дробями
1.1. Разложение действительного иррационального числа в правильную бесконечную цепную дробь . . . . . . . . . . . . . . . . . . . . .
1.2. Сходимость правильных бесконечных цепных дробей . . . . .
1.3. Единственность представления действительного иррационального числа правильной бесконечной цепной дробью
§2. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя
2.1. Оценка погрешности при замене действительного числа его подходящей дробью . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2. Приближение действительного числа подходящими дробями
2.3. Теорема Дирихле . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4. Подходящие дроби как наилучшие приближения
§3. Квадратические иррациональности и периодические цепные дроби . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§4. Представление действительных чисел цепными дробями общего вида . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Решение задач . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Используемая литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Введение
Целью моей курсовой работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.
Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.
Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.
Глава I. Правильные конечные цепные дроби.
§1. Представление рациональных чисел цепными дробями.
Целое число, являющееся делителем каждого из целых чисел , называется общим делителем
этих чисел. Общий делитель этих чисел называется их наибольшим общим делителем, если он делится на всякий общий делитель данных чисел.
Пусть - рациональное число, причем b>0. Применяя к a и b алгоритм Евклида для определения их наибольшего общего делителя, получаем конечную систему равенств:
где неполным частным последовательных делений соответствуют остатки с условием b>>>…>>0, а соответствует остаток 0.
Системе равенств (1) соответствует равносильная система
из которой последовательной заменой каждой из дробей и т.д. ее соответствующим выражением из следующей строки получается представление дроби в виде:
Такое выражение называется правильной (конечной) цепной или правильной непрерывной дробью, при этом предполагается, что целое число, а , …, - натуральные числа.
Имеются различные формы записи цепных дробей:
Согласно последнему обозначению имеем
Числа , , …, называются элементами цепной дроби.
Алгоритм Евклида дает возможность найти представление (или разложение) любого рационального числа в виде цепной дроби. В качестве элементов цепной дроби получаются неполные частные последовательных делений в системе равенств (1), поэтому элементы цепной дроби называются также неполными частными. Кроме того, равенства системы (2) показывают, что процесс разложения в цепную дробь состоит в последовательном выделении целой части и перевертывании дробной части.
Последняя точка зрения является более общей по сравнению с первой, так как она применима к разложению в непрерывную дробь не только рационального, но и любого действительного числа.
Разложение рационального числа имеет, очевидно, конечное число элементов, так как алгоритм Евклида последовательного деления a на b является конечным.
Понятно, что каждая цепная дробь представляет определенное рациональное число, то есть равна определенному рациональному числу. Но возникает вопрос, не имеются ли различные представления одного и того же рационального числа цепной дробью? Оказывается, что не имеются, если потребовать, чтобы было .
Теорема. Существует одна и только одна конечная цепная дробь, равная данному рациональному числу, но при условии, что .
Доказательство: 1) Заметим, что при отказе от указанного условия единственность представления отпадает. В самом деле, при :
так что представление можно удлинить:
например, (2, 3, 1, 4, 2)=( 2, 3, 1, 4, 1, 1).
2) Принимая условие , можно утверждать, что целая часть цепной дроби равна ее первому неполному частному . В самом деле:
1. если n=1, то
2. если n=2, то ; поэтому
3. если n>2, то
=
,
где >1, т.к.
Поэтому и здесь . Докажем то, что рациональное число однозначно представляется цепной дробью , если .
Пусть с условием , . Тогда , так что . Повторным сравнением целых частей получаем , а следовательно и так далее. Если , то в продолжении указанного процесса получим также . Если же , например , то получим , что невозможно.
Теорема доказана.
Вместе с тем мы установили, что при соблюдении условия между рациональными числами и конечными цепными дробями существует взаимно однозначное соответствие.
Замечания:
1. В случае разложения правильной положительной дроби первый элемент , например, .
2. При разложении отрицательной дроби (отрицательный знак дроби всегда относится к числителю) первый элемент будет отрицательным, остальные положительными, так как целая часть отрицательной дроби является целым отрицательным числом, а ее дробная часть, как всегда, положительна.
1 2 3 4 ... последняя
|
|
|
|
НА САЙТЕ: |
|
, ,
|
|