|
Проектирование бесконтактного магнитного реле |
|
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
1. ОПИСАНИЕ ПРИНЦИПА ДЕЙСТВИЯ ПРОЕКТИРУЕМОГО БМР 3
2. РАСЧЕТ БСКОНТАКТНОГО МАГНИТНОГО РЕЛЕ 5
2.1. Расчет удельного сопротивления материала провода при рабочей температуре БМР. 5
2.2. Выбор материала магнитопровода 5
2.3. Определение размеров магнитопровода и предварительный расчет обмоток 6
2.4. Неизвестные из ряда электрических параметров нагрузки 7
2.5. Расчет параметров рабочей цепи БМР 7
2.6. Расчет коэффициента внешней ОС 8
2.7. Расчет параметров цепи ОС 8
2.8. Расчет параметров цепи входного сигнала 9
2.9. Расчет обмотки смещения 9
2.10. Расчет диаметров проводов обмоток 10
2.11. Конструктивный расчет БМР 11
2.12. Температурный расчет БМР 14
2.13. Уточнение параметров БМР 15
2.14. Построение характеристики управления БМР 15
2.15. Определение параметров БМР. 16
2.16. РАСЧЕТ И ВЫБОР ВСПОМОГАТЕЛЬНЫХ ЭЛЕМЕНТОВ СХЕМЫ БМР 18
3. Описание конструкции 22
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 24
ВВЕДЕНИЕ
Бесконтактное магнитное реле (БМР) - электромагнитное устройство, использующее зависимость возвратной магнитной проницаемости от постоянного подмагничивающего поля, для усиления входного сигнала, который создает или изменяет это постоянное поле.
Классификация БМР происходит следующим образом:
1. по виду статической характеристики: нереверсивный и реверсивный;
2. по типу обратной связи (ОС): БМР без ОС; БМР с внутренней ОС; БМР с внешней ОС; БМР со смешанной ОС.
БМР отличаются высокой надежностью; способностью суммировать входные сигналы; немедленной готовностью к работе; удобно согласуются с источником входного сигнала и нагрузкой; имеют низкий порог чувствительности (до 10-19 Вт); большую выходную мощность (105 Вт); высокий КПД (0,7 - 0,95); высокий коэффициент усиления по мощности.
Данная курсовая работа посвящена проектированию одного из БМР. Внутренняя ПОС достигается тем, что постоянная составляющая имеет величину, которая зависит от величины входного сигнала и создает поле, которое или складывается, или вычитается из поля входного сигнала.
КРАТКОЕ ОПИСАНИЕ ПРИНЦИПА ДЕЙСТВИЯ ПРОЕКТИРУЕМОГО БМР
Рассмотрим работу элементарной схемы (рис. 1, а), которая является основой всех схем усилителей с самонасыщением. Пусть напряжение, питающее рабочую цепь схемы uc, синусоидально (рис. 1, г), а вентиль Д - близок к идеальному. остановимся на режиме вынужденного намагничивания при Iy=const, создающем напряженность Hy.
Работу схемы удобно разделить на рабочий полупериод, когда напряжение схемы uc стремится закрыть вентиль, а индукция приобретает значение, соответствующее напряженности управляющего сигнала Hy.
Примем за исходное положение рабочую точку 1 на статистической петле гистерезиса (рис. 1, б). Предположим сначала (для упрощения), что точка 1 совпадает во времени с началом рабочего полупериода.
Под действием напряжения uc, приложенного к обмотке wp, через открытый в рабочий полупериод вентиль проходит ток ip, создающий напряженность Hp (рис. 1, а и б), направленную противоположно напряженности Hy и заставляющую рабочую точку перемещаться по частному циклу на участке 1 - 2. При этом питающее напряжение почти полностью уравновешивается на данном участке ЭДС e (рис. 1, г), наводящейся в обмотке wp. Скорость изменения индукции dB/dt в каждый момент времени определяется мгновенным значением этой ЭДС, а напряженность - частным циклом динамической петли гистерезиса. Ток ip, пропорциональный напряженности Hp, создает небольшое падение напряжения (заштриховано на рис. 1, г) на суммарном активном сопротивлении рабочей цепи, состоящем из сопротивления нагрузки Rн, активного сопротивления рабочей обмотки Rр и активного сопротивления вентиля в открытом состоянии Rд:
R=Rн + Rp + Rд (1)
В момент времени, обозначенный s на рис.1, индукция достигает насыщения (точка 2 на рис.1, д) и, следовательно, престает изменяться. ЭДС е падает до нуля, переставая уравновешивать напряжение uс . Ток ip скачком возрастает (участок 2 - 3 на рис.1, е) и напряжение uс в оставшуюся часть рабочего полупериода полностью уравновешивается падением напряжения на суммарном активном сопротивлении рабочей цепи. При этом рабочая точка перемещается по насыщенному участку петли гистерезиса (принятому горизонтальным) сначала на участке 2 - 3 (рис. 1, б), а затем по мере уменьшения напряжения uс и пропорционального ему тока ip на участке 3 - 4, достигая в точке 4 начала нисходящего (вертикального) участка статической петли.
Казалось бы, что ток ip в рабочей цепи должен прекратиться и вентиль запереться в момент перехода питающего напряжения через нуль. Однако, начиная с момента 4, под действием разности напряженностей Hy - Нp (имеются в виду их абсолютные значения) сердечник начинает размагничиваться, т.е. рабочая точка опускается по нисходящему участку петли гистерезиса (участок 4 - 5 на рис. 1, б). Индукция на этом участке изменяется и в обмотке wp наводится ЭДС, поддерживающая ток iр в рабочей цепи (рис. 1, г, д и е).
Когда напряжение uс (оно отрицательно в управляющий полупериод и стремится запереть вентиль) будет по абсолютной величине больше ЭДС е, вентиль запрется и ток iр прекратится (точка 5). На участке 5 - 6 сердечник находится под действием только Hy, которая и определяет скорость изменения индукции на этом участке. При принятой прямоугольной аппроксимации петли гистерезиса эта скорость B/t (а значит, и ЭДС е) будет постоянной и ее величина будет определяться шириной динамической петли в точке Hy=Нс. дин.
К Концу управляющего полупериода, когда напряжение uc становится меньше ЭДС е (рис. 1, г), вентиль снова может открыться (точка 6) и появится ток iр. Разность напряжений Нy - Hp будет уменьшаться, а скорость изменения индукции и ЭДС - снижаться (участок 6 - 1), пока в точке 1 индукция не достигнет статической петли гистерезиса и ЭДС в обмотке wp не обратится в нуль. Таким образом, процесс размагничивания может закончиться (точка 1) лишь в начале следующего, рабочего полупериода.
Назовем выходным напряжением падение напряжения, создаваемое током ip на суммарном активном сопротивлении рабочей цепи (1). Управление этим напряжением происходит следующим образом. При большем (по абсолютному значению) токе, а значит, и напряженности управления размагничивание будет происходить по более широкой петле гистерезиса и с большей скоростью изменения индукции, тока 1 в управляющий полупериод опустится ниже и в рабочий полупериод индукция дольше будет находится на участке 1- 2. Рабочая точка позднее достигнет точки насыщения 2, угол s увеличится и выходное напряжение (заштрихованная площадь) станет меньше.
На рис. 1, б пунктиром показано перемещение рабочей точки по предельному для данной частоты питающего напряжения циклу, при котором в точке 1 индукция достигает насыщения Bs . Ширина предельного цикла характеризуется напряженностью Hc дин.пред. . В этом случае, очевидно, ЭДС рабочей обмотки уравновесит наибольшую возможную часть напряжения Uc и выходное напряжение станет
1 2 3 4
|
|
|
|
НА САЙТЕ: |
|