Top100
Поиск: реферат, курсовая, диплом
Поиск рефератов [+]

Студик.ру / Банк рефератов / Теплотехника /

Вихревые горелки

Содержание :

1. Характеристики закрученных потоков 3 2. Формирование закрученных течений 7 3. Топки, горелки и циклоны 11 4. Характерные особенности закрученных потоков 15 5. Изменение структуры потока с увеличением закрутки 18 6. Структура рециркуляционной зоны 20 7. Вихревые горелки, прецессирующее вихревое ядро в потоке с горением 22 8. Горение в закрученном потоке 25 9. Пределы срыва и устойчивость пламени 28 10. Проектирование вихревых горелок 29 11. Список использованной литературы 31

1. ХАРАКТЕРИСТИКИ ЗАКРУЧЕННЫХ ПОТОКОВ

Сильное влияние закрутки на инертные и реагирующие течения хорошо известно и изучается на протяжении многих лет. Когда эффект закрутки оказывается полезным, конструктор старается создать закрутку, наиболее подходящую для решения его задач; если же подобные эффекты нежелательны, конструктор предпринимает усилия для регулирования или устранения закрутки. Закрученные течения имеют широкий диапазон приложений. В случае отсутствия химических реакций сюда относятся, например, течения в вихревых реакторах, циклонных сепараторах и трубах Ранка - Хилша, при срыве вихревой пелены с крыльев самолета, в водоворотах и торнадо, в устройствах для распыления аэрозолей в сельском хозяйстве, в теплообменниках, струйных насосах, а также теория бумеранга и полета пчелы. В течениях с горением широко используется сильное благоприятное влияние закрутки инжектируемых воздуха и горючего на улучшение стабилизации высокоинтенсивных процессов горения и при организации эффективного чистого сгорания во многих практических устройствах: в бензиновых и дизельных двигателях, в газовых турбинах, промышленных печах, бойлерах и других технических нагревательных аппаратах. В последнее время усилия исследователей были направлены на понимание и описание аэродинамики закрученных течений с процессами горения газообразных, жидких и твердых топлив. Экономичное конструирование и экологичность работы технических устройств с горением могут быть значительно улучшены дополнительными экспериментами и модельными исследованиями. При этом экспериментальная и теоретическая аэродинамика течений с горением используется вместе со сложными методами вычислительной гидродинамики. Развитие и совершенствование этих методов позволят значительно снизить затраты времени и средств на программы развития новых устройств. Закрученные течения являются результатом сообщения потоку спирального движения с помощью закручивающих лопаток, при использовании генераторов закрутки с осевым и тангенциальным подводом или прямой закруткой путем тангенциальной подачи в камеру с формированием окружной компоненты скорости (называемой также тангенциальной или азимутальной компонентой скорости). Экспериментальные исследования показывают, что закрутка оказывает крупномасштабное влияние на поле течения: на расширение струи, процессы подмешивания и затухания скорости в струе (в случае инертных струй), на размеры, форму и устойчивость пламени и интенсивность горения (в случае реагирующих потоков). На все эти характеристики влияет интенсивность закрутки потока. Интенсивность закрутки обычно характеризуется параметром закрутки, представляющим собой безразмерное отношение осевой компоненты потока момента количества движения к произведению осевой компоненты потока количества движения и эквивалентного радиуса сопла, т. е. (1.1), где величина (1.2) является потоком момента количества движения в осевом направлении и учитывает вклад х - -компоненты турбулентного сдвигового напряжения; а величина (1.3) является потоком количества движения в осевом направлении и учитывает вклад турбулентного нормального напряжения и давления (осевая тяга), d/2радиус сопла, и, v, щ - компоненты скорости в направлении осей х, r, цилиндрической системы координат. В свободной струе, распространяющейся в затопленном пространстве, величины Gх и G постоянны, т. е. являются инвариантами для данной струи. Если использовать уравнение для количества движения в радиальном направлении и пренебречь слагаемыми , то вклад давления в Gx можно выразить через щ следующим образом: (1.4). Эту характеристику зачастую трудно измерить с хорошей точностью, поэтому используются альтернативные упрощенные варианты. Иногда величину S рассчитывают без учета турбулентных напряжений, иногда пренебрегают вкладом давления. В этих случаях величины G и Gх при смещении вниз по потоку не сохраняются. Рассмотрим сначала случай, когда поток закручен как целое на выходе из сопла, т.е. , . Иными словами, профиль осевой скорости и считается равномерным, а скорость закрутки щ возрастает от 0 (при r=0) до щm0 (при r=d/2, т.е. на стенке сопла). Если вклад давления в Gх сводится к учету слагаемого щ2/2, а турбулентными напряжениями пренебрегают, то это дает , , где Gх=щm0/um0 - отношение максимальных скоростей в выходном сечении сопла. Таким образом, параметр закрутки S может быть представлен в виде (1.5), где связь S и G проиллюстрирована на рис.1.1, где также приведены экспериментальные значения измеренных независимо величин S и G. Соотношение S ~ G для вращения газа как целого правдоподобно описывает реальный случай истечения из генератора закрутки при G < 0,4 (S 0,2). Однако при более интенсивности закрутки распределение осевой скорости значительно отклоняется от равномерного; большая часть потока выходит из отверстия вблизи внешней кромки; в качестве примера на рис.1.2 приведены распределения осевой, окружной и радиальной скоростей в кольцевом выходном сечении генератора закрутки с тангенциальным и осевым подводом, полученные экспериментально при нескольких значениях параметра закрутки. Указанная теоретическая зависимость

Рис.1.1. Соотношение между параметрами S и G, характеризующими закрутку.

Рис. 1.2. Радиальные распределения осевой, окружной и радиальной скоростей на выходе из закручивающего устройства со смешанной тангенциально-осевой подачей, демонстрирующие влияние изменения степени закрутки : а осевая скорость; б окружная скорость; в радиальная скорость.

S ~ G дает в этом случае заниженные значения S при заданных значениях G, так что фактически более реальным оказывается следующее соотношение между S и G: (1.6), также изображенное на рис. 1.1. Течение может быть охарактеризовано также локальным параметром закрутки Sx, в котором используется толщина слоя смешения rb, а не радиус сопла d/2. Кроме того, закрутка потока может выражаться непосредственно через угол установки лопаток закручивающего аппарата и геометрические параметры сопла, через тягу и вращающий момент закручивающего устройства, через угол расширения струи вниз по потоку от сопла и через другие параметры. Целесообразно связать угол установки лопаток закручивающего аппарата с создаваемым им значением параметра закрутки. В этой связи для сравнения следует заметить, что угол установки лопаток (ц и параметр закрутки S связаны приближенным соотношением (1.7), где d и dh - соответственно диаметры сопла и втулки закручивающего аппарата. Это соотношение
1 2 3 4 ...    последняя
НА САЙТЕ:
Rambler TOP100 Яндекс цитирования