Top100
Поиск рефератов [+]

Студик.ру / Рефераты / Физика /

Поверхневі напівпровідникові хвилі в напівпровідникових структурах

Міністерство освіти України Національний педагогічний університет ім. М.П.Драгоманова

Курсова робота з загальної фізики на тему:

“Поверхневі електромагнітні хвилі в напівпровідникових кристалах.”

Київ - 1998

План. 1. Вступ. 2. Теорія оптичних констант. 3. Що таке “Поверхневий поляритон”. 4. Основи методу ППВВ. 5. Дослідження структури ZnO на сафірі методами ІЧ спектроскопії. 6. Поверхневі поляритони в стуктурі ZnO на сафірі. 7. Висновки. 8. Застосування матеріалів роботи в середній школі. 9. Список використаної літетатури.

Вступ.

Одним з перспективних напрямків сучасної фізики є дослідження поверхні твердого тіла та взаємодії поверхневих електромагнітних хвиль інфрачервоного діапазону з поверхнею та тонкими шарами напівпровідників . Поверхня впливає на ефективність роботи напівпровідникових приладів. З різними аспектами фізики поверхні пов`язані проблеми створення плівочних елементів, нанесення зміцнюючого покриття, міцності, коррозії, адсорбції та ін. При взаємодії світлової хвилі з поверхнею твердого тіла виникає поверхнева електромагнітна хвиля. Слід зауважити , що під поверхневою електромагнітною хвилею розуміють хвилю, максимум якої знаходиться на поверхні твердого тіла і амплітуда поля якої зменшується по експоненціальному закону при віддаленні від межі розподілу середовищ. Квазічастинки, які відповідають цим коливанням, що мають змішаний електромагнітно-механічний характер, називають поверхневими поляритонами (ПП). Не зважаючи на екзотичну назву, ці хвилі можуть бути знайдені в рамках феноменологічної електродинаміки як роз`вязки рівнянь Максвелла для межі двох середовищ . Дисперсія таких поверхневих хвиль в кристалі визначається залежністю його діелектричної проникності від частоти падаючого світла. Під фононом розуміють квазічастинку , що відповідає механічним коливанням решітки, тобто періодичним зміщенням атомів відносно положення рівноваги. Плазмон - це теж квазічастинка, але вона описує коливання вільних електронів навколо важких іонів. При деяких умовах плазмони та фонони можуть взаємодіяти. Фотони при зіткненні з ідеально гладкою межею розділу не взаємодіють або “не бачать” поверхневі поляритони на цій межі. Якщо ж поблизу поверхні покладено призму, або сама поверхня шорохувата, чи на неї нанесена дифракційна решітка, то поверхневі поляритони можуть збуджуватись падаючим фотоном. Ці явища покладено в основу дослідження поверхневих хвиль. Такими методами є : · метод модифікованого багатократного порушеного внутрішнього відбивання ; · метод модифікованого повного внутрішнього відбиття; · метод комбінаційного розсіяння світла.

Зараз розроблено ефективні методи дослідження структури поверхні. В них використовується розповсюдження в кристалах світлових хвиль з певними значеннями частоти та хвильового вектора. Порівняння залежності , отриманої з рівнянь Максвела, з експериментально отриманою дисперсією хвиль, що розповсюджуються в кристалах , дає можливість отримувати інформацію про спектр поверхневих збуджень середовища. Вибір карбіда кремнію в ролі одного з матеріалів для експериментальних досліджень обумовлений перспективою його використання в напівпровідниковій мікроелектроніці. Дійсно, прилади на основі карбіду кремнію, завдяки його унікальним фізико-хімічним властивостям, можуть використовувати в таких галузях науки і техніки, де потрібна підвищена надійність, радіаційна стійкість, робота при високих температурах. Електрофізичні властивості
карбіду кремнію відчутно залежать від конкретного політипу. Зараз відомо понад 200 модифікацій карбіду кремнію. Позначення політипів в символах Рамсделла складається із цифри, що позначає число шарів вздовж осі С, та букви Н або R в залежності від типу кристалу - гексагонального чи ромбоедричного. Найбільш часто зустрічаються політипи SiC 6H, SiC 15R та SiC. Вони являються хорошими модельними кристалами для дослідження ПП, а також впливу різних поверхневих обробок на властивості ПП. Окрім цього, ідеальні кристали карбіду кремнію та епітаксіальні шари SiC на діелектричних підкладинках є перспективними для використання їх в мікроелектроніці та в інтегральній оптиці.

1. Теорія оптичних констант.

Розповсюдження пучка променів в напівпровідниковому кристалі може бути описане розв`язком рівнянь Максвелла : , (1.1) В другому рівнянні системи , на відміну від діелектриків, врахована густина струму провідності , оскільки більшість напівпровідників по електричним властивостям ближчі до металів, ніж до діелектриків. В загальному випадку питома електропровідність , діелектрична та магнітна проникності (відносні величини, що є функціями частоти) напівпровідника є анізотропними та представляються тензорами другого (або вище) рангів. Оскільки , то:

Але а grad(div), тому (1.2) Аналогічне рівняння можна отримати і для вектора напруженості магнітного поля . Одним із можливих розв`язків рівняння (1.2) для вектора напруженості електричного поля є (1.3) Це рівняння являє собою хвилю, що розповсюджується в напрямі z зі швидкістю v, - кутова частота. Розв`язок (1.3) задовольняє (1.2) при умові (1.4) а це задовольняє комплексному показнику заломлення

(1.5) Враховуючи те, що квадрат швидкості поширення світла у вакуумі , а також ту обставину, що в оптичному діапазоні більшість напівпровідників володіють слабкими магнітними властивостями, тобто співввідношення між головним показником заломлення n , головним показником поглинання k, з однієї сторони та діелектричної проникності , питомої електропровідності - з іншої , приймає вигляд (1.6) або після розділення дійсної та уявної частини , (1.7) Тут - комплексна діелектрична проникність, в котрій по аналогії з n i k, - дійсна частина, а - коефіцієнт при уявній частині. Спираючись на умову причинності можна записати формули, що пов`язують n i k одне з одним :

З першої формули n можна підрахувати для будь-якої частоти в інтервалі від нуля до нескінченності, а значить на основі спектру поглинання може бути підрахований спектр показника заломлення і навпаки. Подібним чином можуть бути записані співвідношення, які пов`язують та (1.8) . (1.9) Це співвідношення Крамерса-Кроніга.

Тепер, підставивши (1.4) та (1.5) в (1.3), знайдемо , тут видно, що головний показник поглинання k характеризує затухання електромагнітної хвилі в напівпровіднику. Оскільки енергія хвилі пропорційна квадрату амплітуди , то для характеристики поглинання речовини часто застосовують замість величину , (1.10) це коефіцієнт поглинання , чисельно рівний оберненій товщині шару напівпровідника, в якому інтенсивність електромагнітної хвилі зменшується в e раз. Крім головного показника поглинання

, (1.11) рівного по величині , згідно формули (1.5) , уявній частині комплексного показника заломлення , при деяких механізмах взаємодії електромагнітної хвилі і речовини можуть виникати особливі енергетичні витрати , котрі виражають формулою , (1.12)

2. Що таке
1 2 3 4 ...    последняя
На сайте:
,
,
Rambler TOP100 Яндекс цитирования